A Smarter Particle Filter

نویسندگان

  • Xiaoqin Zhang
  • Weiming Hu
  • Stephen J. Maybank
چکیده

Particle filtering is an effective sequential Monte Carlo approach to solve the recursive Bayesian filtering problem in non-linear and non-Gaussian systems. The algorithm is based on importance sampling. However, in the literature, the proper choice of the proposal distribution for importance sampling remains a tough task and has not been resolved yet. Inspired by the animal swarm intelligence in the evolutionary computing, we propose a swarm intelligence based particle filter algorithm. Unlike the independent particles in the conventional particle filter, the particles in our algorithm cooperate with each other and evolve according to the cognitive effect and social effect in analogy with the cooperative and social aspects of animal populations. Furthermore, the theoretical analysis shows that our algorithm is essentially a conventional particle filter with a hierarchial importance sampling process which is guided by the swarm intelligence extracted from the particle configuration, and thus greatly overcome the sample impoverishment problem suffered by particle filters. We compare the proposed approach with several nonlinear filters in the following tasks: state estimation, and visual tracking. The experiments demonstrate the effectiveness and promise of our approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Modified Particle Filter With Application in Target Tracking

The particle filter (PF) is a novel technique that has sufficiently good estimation results for the nonlinear/non-Gaussian systems. However, PF is inconsistent that caused mainly by loss of particle diversity in resampling step and unknown a priori knowledge of the noise statistics. This paper introduces a new modified particle filter called adaptive unscented particle filter (AUPF) to overcome th...

متن کامل

Unscented Auxiliary Particle Filter Implementation of the Cardinalized Probability Hypothesis Density Filters

The probability hypothesis density (PHD) filter suffers from lack of precise estimation of the expected number of targets. The Cardinalized PHD (CPHD) recursion, as a generalization of the PHD recursion, remedies this flaw and simultaneously propagates the intensity function and the posterior cardinality distribution. While there are a few new approaches to enhance the Sequential Monte Carlo (S...

متن کامل

An Efficient Target Tracking Algorithm Based on Particle Filter and Genetic Algorithm

In this paper, we propose an efficient hybrid Particle Filter (PF) algorithm for video tracking by employing a genetic algorithm to solve the sample impoverishment problem. In the presented method, the object to be tracked is selected by a rectangular window inside which a few numbers of particles are scattered. The particles’ weights are calculated based on the similarity between feature vecto...

متن کامل

کاهش تعداد ماهواره‌ها در یک سیستم ناوبری ترکیبی GPS/INS با استفاده از فیلتر ذره‌ای

The estimation of situation in a combinational navigation GPS/INS with least number of satellites is the main purpose of this paper. As inertial measurement unit uses altimeter for height measurement, we can assume which height poses certain amounts, whereas geographical length and width are unknown to us in this paper. The single difference GPS is employed for updating the inertial navigation ...

متن کامل

The Particle Filter and Extended Kalman Filter methods for the structural system identification considering various uncertainties

Structural system identification using recursive methods has been a research direction of increasing interest in recent decades. The two prominent methods, including the Extended Kalman Filter (EKF) and the Particle Filter (PF), also known as the Sequential Monte Carlo (SMC), are advantageous in this field. In this study, the system identification of a shake table test of a 4-story steel struct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009